{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n" ] } ], "source": [ "import arviz as az\n", "import numpy as np # For vectorized math operations\n", "import pandas as pd # For file input/output\n", "import pymc as pm\n", "import pytensor.tensor as pt\n", "\n", "from matplotlib import pyplot as plt\n", "from matplotlib.lines import Line2D" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%config InlineBackend.figure_format = 'retina' # high resolution figures\n", "az.style.use(\"arviz-darkgrid\")\n", "plt.rcParams[\"font.family\"] = \"Latin Modern Roman\"\n", "\n", "rng = np.random.default_rng(42)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Use a standard dataset for this example" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | idcase | \n", "depvar | \n", "ic.gc | \n", "ic.gr | \n", "ic.ec | \n", "ic.er | \n", "ic.hp | \n", "oc.gc | \n", "oc.gr | \n", "oc.ec | \n", "oc.er | \n", "oc.hp | \n", "income | \n", "agehed | \n", "rooms | \n", "region | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "gc | \n", "866.0 | \n", "962.64 | \n", "859.9 | \n", "995.76 | \n", "1135.5 | \n", "199.69 | \n", "151.72 | \n", "553.34 | \n", "505.6 | \n", "237.88 | \n", "7 | \n", "25 | \n", "6 | \n", "ncostl | \n", "
\n", " | idcase | \n", "alt_id | \n", "choice | \n", "depvar | \n", "income | \n", "agehed | \n", "rooms | \n", "region | \n", "installation_costs | \n", "operating_costs | \n", "
---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "1 | \n", "1 | \n", "gc | \n", "7 | \n", "25 | \n", "6 | \n", "ncostl | \n", "866.00 | \n", "199.69 | \n", "
1 | \n", "1 | \n", "2 | \n", "0 | \n", "gc | \n", "7 | \n", "25 | \n", "6 | \n", "ncostl | \n", "962.64 | \n", "151.72 | \n", "
2 | \n", "1 | \n", "3 | \n", "0 | \n", "gc | \n", "7 | \n", "25 | \n", "6 | \n", "ncostl | \n", "859.90 | \n", "553.34 | \n", "
3 | \n", "1 | \n", "4 | \n", "0 | \n", "gc | \n", "7 | \n", "25 | \n", "6 | \n", "ncostl | \n", "995.76 | \n", "505.60 | \n", "
4 | \n", "1 | \n", "5 | \n", "0 | \n", "gc | \n", "7 | \n", "25 | \n", "6 | \n", "ncostl | \n", "1135.50 | \n", "237.88 | \n", "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "
<xarray.Dataset> Size: 144MB\n", "Dimensions: (chain: 4, draw: 1000, obs: 900, alts_probs: 5)\n", "Coordinates:\n", " * chain (chain) int64 32B 0 1 2 3\n", " * draw (draw) int64 8kB 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999\n", " * obs (obs) int64 7kB 0 1 2 3 4 5 6 7 ... 893 894 895 896 897 898 899\n", " * alts_probs (alts_probs) <U2 40B 'ec' 'er' 'gc' 'gr' 'hp'\n", "Data variables:\n", " beta_ic (chain, draw) float64 32kB 0.001832 0.001817 ... 0.001948\n", " beta_oc (chain, draw) float64 32kB -0.003705 -0.003709 ... -0.004581\n", " p (chain, draw, obs, alts_probs) float64 144MB 0.07556 ... 0.1102\n", "Attributes:\n", " created_at: 2024-06-23T20:32:15.207517+00:00\n", " arviz_version: 0.18.0
<xarray.Dataset> Size: 29MB\n", "Dimensions: (chain: 4, draw: 1000, obs: 900)\n", "Coordinates:\n", " * chain (chain) int64 32B 0 1 2 3\n", " * draw (draw) int64 8kB 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999\n", " * obs (obs) int64 7kB 0 1 2 3 4 5 6 7 ... 892 893 894 895 896 897 898 899\n", "Data variables:\n", " y_cat (chain, draw, obs) int64 29MB 3 3 2 3 3 4 3 2 2 ... 3 3 3 2 3 3 4 1\n", "Attributes:\n", " created_at: 2024-06-23T20:32:21.823805+00:00\n", " arviz_version: 0.18.0\n", " inference_library: pymc\n", " inference_library_version: 5.15.1
<xarray.Dataset> Size: 29MB\n", "Dimensions: (chain: 4, draw: 1000, y_cat_dim_0: 1, y_cat_dim_1: 900)\n", "Coordinates:\n", " * chain (chain) int64 32B 0 1 2 3\n", " * draw (draw) int64 8kB 0 1 2 3 4 5 6 ... 993 994 995 996 997 998 999\n", " * y_cat_dim_0 (y_cat_dim_0) int64 8B 0\n", " * y_cat_dim_1 (y_cat_dim_1) int64 7kB 0 1 2 3 4 5 ... 894 895 896 897 898 899\n", "Data variables:\n", " y_cat (chain, draw, y_cat_dim_0, y_cat_dim_1) float64 29MB -1.261 ...\n", "Attributes:\n", " created_at: 2024-06-23T20:32:15.210389+00:00\n", " arviz_version: 0.18.0
<xarray.Dataset> Size: 204kB\n", "Dimensions: (chain: 4, draw: 1000)\n", "Coordinates:\n", " * chain (chain) int64 32B 0 1 2 3\n", " * draw (draw) int64 8kB 0 1 2 3 4 5 6 ... 994 995 996 997 998 999\n", "Data variables:\n", " acceptance_rate (chain, draw) float64 32kB 0.9628 1.0 ... 0.9096 0.8808\n", " diverging (chain, draw) bool 4kB False False False ... False False\n", " energy (chain, draw) float64 32kB 1.312e+03 ... 1.312e+03\n", " lp (chain, draw) float64 32kB 1.311e+03 ... 1.311e+03\n", " n_steps (chain, draw) int64 32kB 3 1 7 1 3 7 3 7 ... 7 3 3 3 3 7 3\n", " step_size (chain, draw) float64 32kB 0.03082 0.03082 ... 0.0351\n", " tree_depth (chain, draw) int64 32kB 2 1 3 1 2 3 2 3 ... 3 2 2 2 2 3 2\n", "Attributes:\n", " created_at: 2024-06-23T20:32:15.209472+00:00\n", " arviz_version: 0.18.0
<xarray.Dataset> Size: 18MB\n", "Dimensions: (chain: 1, draw: 500, obs: 900, alts_probs: 5)\n", "Coordinates:\n", " * chain (chain) int64 8B 0\n", " * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499\n", " * obs (obs) int64 7kB 0 1 2 3 4 5 6 7 ... 893 894 895 896 897 898 899\n", " * alts_probs (alts_probs) <U2 40B 'ec' 'er' 'gc' 'gr' 'hp'\n", "Data variables:\n", " beta_ic (chain, draw) float64 4kB 1.383 -0.07456 ... -0.921 1.762\n", " beta_oc (chain, draw) float64 4kB -0.2187 1.131 ... -1.086 -0.03639\n", " p (chain, draw, obs, alts_probs) float64 18MB 1.347e-100 ... 0.0\n", "Attributes:\n", " created_at: 2024-06-23T20:32:10.756506+00:00\n", " arviz_version: 0.18.0\n", " inference_library: pymc\n", " inference_library_version: 5.15.1
<xarray.Dataset> Size: 4MB\n", "Dimensions: (chain: 1, draw: 500, obs: 900)\n", "Coordinates:\n", " * chain (chain) int64 8B 0\n", " * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499\n", " * obs (obs) int64 7kB 0 1 2 3 4 5 6 7 ... 892 893 894 895 896 897 898 899\n", "Data variables:\n", " y_cat (chain, draw, obs) int64 4MB 3 1 1 2 1 3 3 3 3 ... 1 1 1 3 1 3 1 3\n", "Attributes:\n", " created_at: 2024-06-23T20:32:10.758790+00:00\n", " arviz_version: 0.18.0\n", " inference_library: pymc\n", " inference_library_version: 5.15.1
<xarray.Dataset> Size: 14kB\n", "Dimensions: (obs: 900)\n", "Coordinates:\n", " * obs (obs) int64 7kB 0 1 2 3 4 5 6 7 ... 892 893 894 895 896 897 898 899\n", "Data variables:\n", " y_cat (obs) int64 7kB 2 2 2 1 1 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 1 2 2 2 2 2\n", "Attributes:\n", " created_at: 2024-06-23T20:32:10.759288+00:00\n", " arviz_version: 0.18.0\n", " inference_library: pymc\n", " inference_library_version: 5.15.1
\n", " | mean | \n", "sd | \n", "hdi_3% | \n", "hdi_97% | \n", "mcse_mean | \n", "mcse_sd | \n", "ess_bulk | \n", "ess_tail | \n", "r_hat | \n", "
---|---|---|---|---|---|---|---|---|---|
beta_ic | \n", "0.002 | \n", "0.0 | \n", "0.002 | \n", "0.002 | \n", "0.0 | \n", "0.0 | \n", "1802.0 | \n", "2209.0 | \n", "1.0 | \n", "
beta_oc | \n", "-0.004 | \n", "0.0 | \n", "-0.005 | \n", "-0.004 | \n", "0.0 | \n", "0.0 | \n", "983.0 | \n", "1241.0 | \n", "1.0 | \n", "
<xarray.DataArray 'p' (alts_probs: 5)> Size: 40B\n", "array([0.08432415, 0.13772203, 0.26912233, 0.38199249, 0.12683901])\n", "Coordinates:\n", " * alts_probs (alts_probs) <U2 40B 'ec' 'er' 'gc' 'gr' 'hp'
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "
\n", " | mean | \n", "sd | \n", "hdi_3% | \n", "hdi_97% | \n", "mcse_mean | \n", "mcse_sd | \n", "ess_bulk | \n", "ess_tail | \n", "r_hat | \n", "
---|---|---|---|---|---|---|---|---|---|
beta_ic | \n", "0.001 | \n", "0.000 | \n", "-0.000 | \n", "0.002 | \n", "0.000 | \n", "0.000 | \n", "1324.0 | \n", "1904.0 | \n", "1.00 | \n", "
beta_oc | \n", "-0.003 | \n", "0.001 | \n", "-0.005 | \n", "-0.001 | \n", "0.000 | \n", "0.000 | \n", "1337.0 | \n", "1785.0 | \n", "1.00 | \n", "
alpha[ec] | \n", "1.063 | \n", "0.513 | \n", "0.087 | \n", "2.054 | \n", "0.017 | \n", "0.012 | \n", "914.0 | \n", "1150.0 | \n", "1.00 | \n", "
alpha[er] | \n", "1.102 | \n", "0.491 | \n", "0.135 | \n", "2.017 | \n", "0.017 | \n", "0.012 | \n", "856.0 | \n", "900.0 | \n", "1.01 | \n", "
alpha[gc] | \n", "2.397 | \n", "0.320 | \n", "1.826 | \n", "3.019 | \n", "0.011 | \n", "0.008 | \n", "874.0 | \n", "1002.0 | \n", "1.01 | \n", "
alpha[gr] | \n", "0.760 | \n", "0.385 | \n", "0.036 | \n", "1.448 | \n", "0.012 | \n", "0.009 | \n", "957.0 | \n", "1124.0 | \n", "1.01 | \n", "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "
\n", " | mean | \n", "sd | \n", "hdi_3% | \n", "hdi_97% | \n", "mcse_mean | \n", "mcse_sd | \n", "ess_bulk | \n", "ess_tail | \n", "r_hat | \n", "
---|---|---|---|---|---|---|---|---|---|
beta_income[ec] | \n", "0.1090 | \n", "0.1045 | \n", "-0.1194 | \n", "0.2745 | \n", "0.0111 | \n", "0.0079 | \n", "125.5245 | \n", "1785.3613 | \n", "1.0326 | \n", "
beta_income[er] | \n", "0.0568 | \n", "0.0985 | \n", "-0.1462 | \n", "0.2349 | \n", "0.0034 | \n", "0.0081 | \n", "814.4173 | \n", "1351.8588 | \n", "1.1603 | \n", "
beta_income[gc] | \n", "0.0701 | \n", "0.0810 | \n", "-0.0908 | \n", "0.2230 | \n", "0.0039 | \n", "0.0028 | \n", "514.8539 | \n", "1447.0504 | \n", "1.0928 | \n", "
beta_income[gr] | \n", "-0.0182 | \n", "0.0991 | \n", "-0.2034 | \n", "0.1530 | \n", "0.0166 | \n", "0.0119 | \n", "43.2790 | \n", "1394.2747 | \n", "1.0660 | \n", "
beta_ic | \n", "0.0005 | \n", "0.0007 | \n", "-0.0008 | \n", "0.0016 | \n", "0.0002 | \n", "0.0001 | \n", "21.2834 | \n", "1025.6984 | \n", "1.1204 | \n", "
beta_oc | \n", "-0.0037 | \n", "0.0014 | \n", "-0.0063 | \n", "-0.0008 | \n", "0.0001 | \n", "0.0001 | \n", "130.7170 | \n", "1819.1965 | \n", "1.0273 | \n", "
alpha[ec] | \n", "0.9330 | \n", "1.0135 | \n", "-0.4580 | \n", "2.9612 | \n", "0.1099 | \n", "0.0780 | \n", "361.4979 | \n", "1033.9501 | \n", "1.0793 | \n", "
alpha[er] | \n", "1.1878 | \n", "1.0135 | \n", "-0.3409 | \n", "3.1845 | \n", "0.0761 | \n", "0.0608 | \n", "377.7638 | \n", "1058.1381 | \n", "1.1560 | \n", "
alpha[gc] | \n", "2.2653 | \n", "0.7507 | \n", "1.2054 | \n", "3.7209 | \n", "0.1258 | \n", "0.0897 | \n", "46.5848 | \n", "959.9773 | \n", "1.0614 | \n", "
alpha[gr] | \n", "1.0156 | \n", "0.9110 | \n", "-0.1379 | \n", "2.6814 | \n", "0.2079 | \n", "0.1493 | \n", "17.7565 | \n", "40.8513 | \n", "1.1541 | \n", "
chol_corr[0, 0] | \n", "1.0000 | \n", "0.0000 | \n", "1.0000 | \n", "1.0000 | \n", "0.0000 | \n", "0.0000 | \n", "4000.0000 | \n", "4000.0000 | \n", "NaN | \n", "
chol_corr[0, 1] | \n", "0.1392 | \n", "0.3365 | \n", "-0.5441 | \n", "0.7382 | \n", "0.0075 | \n", "0.0220 | \n", "2135.5951 | \n", "2551.8261 | \n", "1.1486 | \n", "
chol_corr[0, 2] | \n", "0.0750 | \n", "0.3488 | \n", "-0.5012 | \n", "0.7344 | \n", "0.0588 | \n", "0.0419 | \n", "47.6418 | \n", "1379.3299 | \n", "1.0662 | \n", "
chol_corr[0, 3] | \n", "0.0536 | \n", "0.3764 | \n", "-0.5126 | \n", "0.7631 | \n", "0.0860 | \n", "0.0618 | \n", "24.2892 | \n", "2253.6964 | \n", "1.1096 | \n", "
chol_corr[1, 0] | \n", "0.1392 | \n", "0.3365 | \n", "-0.5441 | \n", "0.7382 | \n", "0.0075 | \n", "0.0220 | \n", "2135.5951 | \n", "2551.8261 | \n", "1.1486 | \n", "
chol_corr[1, 1] | \n", "1.0000 | \n", "0.0000 | \n", "1.0000 | \n", "1.0000 | \n", "0.0000 | \n", "0.0000 | \n", "38.4914 | \n", "2944.7704 | \n", "1.0696 | \n", "
chol_corr[1, 2] | \n", "0.1438 | \n", "0.3286 | \n", "-0.4194 | \n", "0.8010 | \n", "0.0223 | \n", "0.0344 | \n", "199.9289 | \n", "2081.5502 | \n", "1.0314 | \n", "
chol_corr[1, 3] | \n", "0.0821 | \n", "0.3555 | \n", "-0.4699 | \n", "0.7795 | \n", "0.0605 | \n", "0.0431 | \n", "45.2660 | \n", "2019.6281 | \n", "1.0575 | \n", "
chol_corr[2, 0] | \n", "0.0750 | \n", "0.3488 | \n", "-0.5012 | \n", "0.7344 | \n", "0.0588 | \n", "0.0419 | \n", "47.6418 | \n", "1379.3299 | \n", "1.0662 | \n", "
chol_corr[2, 1] | \n", "0.1438 | \n", "0.3286 | \n", "-0.4194 | \n", "0.8010 | \n", "0.0223 | \n", "0.0344 | \n", "199.9289 | \n", "2081.5502 | \n", "1.0314 | \n", "
chol_corr[2, 2] | \n", "1.0000 | \n", "0.0000 | \n", "1.0000 | \n", "1.0000 | \n", "0.0000 | \n", "0.0000 | \n", "21.0671 | \n", "3321.0770 | \n", "1.1213 | \n", "
chol_corr[2, 3] | \n", "0.0885 | \n", "0.4025 | \n", "-0.5738 | \n", "0.6999 | \n", "0.1268 | \n", "0.0924 | \n", "12.2708 | \n", "4.3794 | \n", "1.2387 | \n", "
chol_corr[3, 0] | \n", "0.0536 | \n", "0.3764 | \n", "-0.5126 | \n", "0.7631 | \n", "0.0860 | \n", "0.0618 | \n", "24.2892 | \n", "2253.6964 | \n", "1.1096 | \n", "
chol_corr[3, 1] | \n", "0.0821 | \n", "0.3555 | \n", "-0.4699 | \n", "0.7795 | \n", "0.0605 | \n", "0.0431 | \n", "45.2660 | \n", "2019.6281 | \n", "1.0575 | \n", "
chol_corr[3, 2] | \n", "0.0885 | \n", "0.4025 | \n", "-0.5738 | \n", "0.6999 | \n", "0.1268 | \n", "0.0924 | \n", "12.2708 | \n", "4.3794 | \n", "1.2387 | \n", "
chol_corr[3, 3] | \n", "1.0000 | \n", "0.0000 | \n", "1.0000 | \n", "1.0000 | \n", "0.0000 | \n", "0.0000 | \n", "3464.6160 | \n", "3626.8755 | \n", "1.0597 | \n", "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "
\n", " | mean | \n", "sd | \n", "hdi_3% | \n", "hdi_97% | \n", "mcse_mean | \n", "mcse_sd | \n", "ess_bulk | \n", "ess_tail | \n", "r_hat | \n", "
---|---|---|---|---|---|---|---|---|---|
beta_ic | \n", "-0.0007 | \n", "0.0006 | \n", "-0.0018 | \n", "0.0004 | \n", "0.0000 | \n", "0.0000 | \n", "2034.8098 | \n", "2619.1608 | \n", "1.0010 | \n", "
beta_oc | \n", "-0.0055 | \n", "0.0015 | \n", "-0.0081 | \n", "-0.0025 | \n", "0.0000 | \n", "0.0000 | \n", "2549.3952 | \n", "3052.4259 | \n", "1.0023 | \n", "
beta_income[ec] | \n", "-0.0415 | \n", "0.1123 | \n", "-0.2552 | \n", "0.1597 | \n", "0.0032 | \n", "0.0023 | \n", "1233.5860 | \n", "1949.2437 | \n", "1.0024 | \n", "
beta_income[er] | \n", "-0.0708 | \n", "0.1064 | \n", "-0.2544 | \n", "0.1412 | \n", "0.0031 | \n", "0.0022 | \n", "1151.0759 | \n", "1873.4452 | \n", "1.0022 | \n", "
beta_income[gc] | \n", "-0.0527 | \n", "0.0866 | \n", "-0.2195 | \n", "0.1042 | \n", "0.0027 | \n", "0.0019 | \n", "1063.0967 | \n", "1595.1725 | \n", "1.0012 | \n", "
beta_income[gr] | \n", "-0.1619 | \n", "0.0990 | \n", "-0.3460 | \n", "0.0231 | \n", "0.0029 | \n", "0.0021 | \n", "1134.4858 | \n", "1809.5429 | \n", "1.0011 | \n", "
alpha[ec] | \n", "3.5846 | \n", "0.9338 | \n", "1.9701 | \n", "5.4876 | \n", "0.0286 | \n", "0.0204 | \n", "1066.7882 | \n", "1428.9757 | \n", "1.0018 | \n", "
alpha[er] | \n", "3.8573 | \n", "0.9128 | \n", "2.1368 | \n", "5.5381 | \n", "0.0294 | \n", "0.0210 | \n", "968.1931 | \n", "1275.9228 | \n", "1.0013 | \n", "
alpha[gc] | \n", "4.1892 | \n", "0.6397 | \n", "2.9483 | \n", "5.3714 | \n", "0.0211 | \n", "0.0150 | \n", "918.4178 | \n", "1199.7850 | \n", "1.0012 | \n", "
alpha[gr] | \n", "3.1823 | \n", "0.7224 | \n", "1.8973 | \n", "4.5941 | \n", "0.0232 | \n", "0.0165 | \n", "967.8811 | \n", "1118.1689 | \n", "1.0017 | \n", "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "
<xarray.Dataset> Size: 173MB\n", "Dimensions: (chain: 4, draw: 1000, obs: 900, alts_probs: 5)\n", "Coordinates:\n", " * chain (chain) int64 32B 0 1 2 3\n", " * draw (draw) int64 8kB 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999\n", " * obs (obs) int64 7kB 0 1 2 3 4 5 6 7 ... 893 894 895 896 897 898 899\n", " * alts_probs (alts_probs) <U2 40B 'ec' 'er' 'gc' 'gr' 'hp'\n", "Data variables:\n", " p (chain, draw, obs, alts_probs) float64 144MB 0.05725 ... 0.04717\n", " y_cat (chain, draw, obs) int64 29MB 2 4 4 2 1 2 2 2 ... 3 3 2 1 2 4 2\n", "Attributes:\n", " created_at: 2024-06-23T20:34:06.401295+00:00\n", " arviz_version: 0.18.0\n", " inference_library: pymc\n", " inference_library_version: 5.15.1
<xarray.Dataset> Size: 58kB\n", "Dimensions: (ic_ec_dim_0: 900, ic_er_dim_0: 900, oc_ec_dim_0: 900,\n", " oc_er_dim_0: 900)\n", "Coordinates:\n", " * ic_ec_dim_0 (ic_ec_dim_0) int64 7kB 0 1 2 3 4 5 ... 894 895 896 897 898 899\n", " * ic_er_dim_0 (ic_er_dim_0) int64 7kB 0 1 2 3 4 5 ... 894 895 896 897 898 899\n", " * oc_ec_dim_0 (oc_ec_dim_0) int64 7kB 0 1 2 3 4 5 ... 894 895 896 897 898 899\n", " * oc_er_dim_0 (oc_er_dim_0) int64 7kB 0 1 2 3 4 5 ... 894 895 896 897 898 899\n", "Data variables:\n", " ic_ec (ic_ec_dim_0) float64 7kB 859.9 796.8 719.9 ... 799.8 967.9\n", " ic_er (ic_er_dim_0) float64 7kB 995.8 894.7 ... 1.123e+03 1.092e+03\n", " oc_ec (oc_ec_dim_0) float64 7kB 664.0 624.3 526.9 ... 594.2 622.4\n", " oc_er (oc_er_dim_0) float64 7kB 606.7 583.8 485.7 ... 481.9 550.2\n", "Attributes:\n", " created_at: 2024-06-23T20:34:06.404039+00:00\n", " arviz_version: 0.18.0\n", " inference_library: pymc\n", " inference_library_version: 5.15.1
<xarray.DataArray 'p' (alts_probs: 5)> Size: 40B\n", "array([0.05293203, 0.07065756, 0.66509458, 0.14841689, 0.06289894])\n", "Coordinates:\n", " * alts_probs (alts_probs) <U2 40B 'ec' 'er' 'gc' 'gr' 'hp'
\n", " | rank | \n", "elpd_loo | \n", "p_loo | \n", "elpd_diff | \n", "weight | \n", "se | \n", "dse | \n", "warning | \n", "scale | \n", "
---|---|---|---|---|---|---|---|---|---|
m4 | \n", "0 | \n", "-1020.574185 | \n", "9.992352 | \n", "0.000000 | \n", "7.557224e-01 | \n", "28.247545 | \n", "0.000000 | \n", "False | \n", "log | \n", "
m2 | \n", "1 | \n", "-1023.552608 | \n", "5.038925 | \n", "2.978423 | \n", "2.305736e-01 | \n", "27.799085 | \n", "3.623620 | \n", "False | \n", "log | \n", "
m3 | \n", "2 | \n", "-1025.780290 | \n", "9.345972 | \n", "5.206104 | \n", "1.972889e-13 | \n", "28.163863 | \n", "3.007272 | \n", "True | \n", "log | \n", "
m1 | \n", "3 | \n", "-1309.642978 | \n", "1.228472 | \n", "289.068792 | \n", "1.370393e-02 | \n", "12.918328 | \n", "23.321276 | \n", "False | \n", "log | \n", "